SISTEM MONITORING KONDISI PASIEN BERBASIS INTERNET OF THINGS
Main Article Content
Abstract
Real-time patient condition monitoring is a crucial aspect of medical care, particularly for heart rate, body temperature, and intravenous (IV) fluid volume. Traditionally, monitoring has been performed manually by medical personnel, which poses a risk of delayed response, especially in IV fluid replacement. This study developed an Internet of Things (IoT)-based monitoring system to automatically observe patient conditions and send notifications when abnormalities are detected. The system utilizes the MAX30102 sensor to detect heart rate, the MLX90614 sensor to measure body temperature, and the XKC-Y25-V sensor to monitor IV fluid volume. A servo motor is employed to automatically regulate the IV drip rate via the Blynk application. Testing showed that the system accurately controls the drip rate at 20 and 30 drops per minute. The average measurement error for body temperature was 1.18%, and 3.64% for heart rate, while the IV fluid sensors accurately detected the remaining fluid volume. Notifications were delivered with an average delay of 5 seconds. These results indicate that the system effectively improves monitoring efficiency, accelerates medical response, and supports remote real-time monitoring through IoT integration.
Keywords: Internet of Things, Heart Rate, Body Temperature, Infusion, Patient Monitoring
Abstrak
Pemantauan kondisi pasien secara real-time merupakan aspek krusial dalam dunia medis, khususnya terkait detak jantung, suhu tubuh, dan volume cairan infus. Selama ini, pemantauan masih dilakukan secara manual oleh tenaga medis, yang berisiko menyebabkan keterlambatan penanganan, terutama dalam penggantian cairan infus. Penelitian ini mengembangkan sistem monitoring berbasis Internet of Things (IoT) untuk memantau kondisi pasien secara otomatis dan memberikan notifikasi jika terjadi anomali. Sistem menggunakan sensor MAX30102 untuk mendeteksi detak jantung, MLX90614 untuk mengukur suhu tubuh, dan XKC-Y25-V untuk memantau volume infus. Motor servo digunakan untuk mengatur laju tetesan infus secara otomatis melalui aplikasi Blynk. Pengujian menunjukkan bahwa sistem dapat mengatur laju infus pada 20 dan 30 tetesan per menit secara akurat. Rata-rata error pengukuran suhu tubuh sebesar 1,18% dan detak jantung 3,64%, sementara sensor infus mampu mendeteksi volume sisa cairan dengan akurat. Notifikasi dikirim dalam waktu rata-rata 5 detik. Hasil ini menunjukkan bahwa sistem mampu meningkatkan efisiensi pemantauan dan mempercepat respons medis, serta mendukung pemantauan jarak jauh secara real-time.
Kata kunci: Internet of Things, Detak Jantung, Suhu Tubuh, Infus, Monitoring Pasien
Article Details
Section
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.