PENGARUH PEMBERIAN KARBON TETRAKLORIDA, NIASIN, KAFEIN, DAN MADU TRIGONA TERHADAP FUNGSI HATI TIKUS
Main Article Content
Abstract
Karbon tetraklorida adalah zat yang biasa digunakan untuk menginduksi peroksidasi lipid dan keracunan. Akhir-akhir ini, terdapat laporan mengenai kasus hepatotoksisitas yang disebabkan oleh minuman berenergi dan kandungan niasin didalamnya diduga berperan sebagai penyebab kerusakan hati. Kandungan kafein yang ada didalam minuman berenergi sebenarnya memiliki efek hepatoprotektif. Namun, efek hepatoprotektif kafein kurang kuat dalam menangkal efek hepatotoksik dari niasin. Kerusakan hati dideteksi melalui peningkatan enzim transaminase. Madu trigona mengandung flavonoid yang tinggi dan memiliki peran protektif terhadap inflamasi dan stres oksidatif. Selain enzim transaminasi, salah satu indikator gangguan fungsi ginjal yaitu dengan adanya peningkatan kreatinin serum. Karbon tetraklorida dosis 0,1 dan 1,0 ml/kg bobot badan mengakibatkan peningkatan kreatinin, sebaliknya pada dosis 10 ml/kg bobot badan kadar kreatinin sudah sangat turun (p<0,05). Sehingga, Karbon tetraklorida menimbulkan kerusakan sebanding dengan dosis yang diinduksikan. Serta tidak ada korelasi yang signifikan pada kadar enzim AST dan ALT (p>0,05). Sebaliknya, ada korelasi yang signifikan pada kadar enzim GGT (p < 0,05). Studi ini menunjukkan bahwa niasin dan kafein dosis 0,491 mg/200grBB/hari dan 1,2275 mg/200grBB/hari dalam model minuman berenergi yang setara dengan mengkonsumsi tiga kemasan per hari dapat meningkatkan kadar enzim GGT. Selain itu, medu trigona juga memiliki efek hepatoprotektor yang berfungsi untuk menurunkan kadar ALT dan AST.
Article Details
Section
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Al-Waili NS. Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. J Med Food. 2003;6(2):135–40.
Arauz J, Galicia-Moreno M, CortesReynosa P, et al. Coffee attenuates fibrosis by decreasing the expression of TGF-β and CTGF in a murine model of liver damage. J. Appl. Toxicol. 2013.
Baron DN. Kapita Selekta Patologi Klinik. Ed ke4. Andrianto P dan Gunawan J; penerjemah. Terjemahan dari: A Short Textbook of Chemical Pathology, EGC, Jakarta, 1992, pp 113-231
Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S. Paracetamol: new vistas of an old drug. CNS Drug Rev. 2006;12(3‐ 4):250–75.
Cadden ISH, Partovi N, Yoshida E. Review Article: Possible beneficial effects of coffee on liver disease and function. Aliment Pharmacol Ther. 2007; 26: 1-8.
Escudero E, Mora L, Fraser PD, Aristoy MC, Toldrá F. Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry. 2013;138(2– 3):1282–8.
Forbes SC, Candow DG, Little JP, et al. Effect of red bull energy drink on repeated wingate cycle performance and benchpress muscle endurance. Int J Sport Nutr Exerc Metab. 2007; 433-444.
Furtado KS, Prado MG, Aguiar e Silva MA, Dias MC, Rivelli DP, et al. Coffee and caffeine protect against liver injury induced by thioacetamide in male wistar rats. Basic Clin Pharmacol Toxicol . 2012; 339-347.
Heckman MA, Sherry K, de Mejia EG. Energy drinks: an assessment of their market size, consumer demographics, ingredient profile, functionality, and regulations in the united states. Compr Rev Food Sci Food Saf. 2010; 9: 303–317.
Jeon TI, Hwang SG, Park NG, Shin SI, Choi SD, Park DK. Toxicology 187 (2003) 67-73.
Khayyat L, Sorour J, Rawi MA, Essawy A. Histological,ultrastructural and physiological studies on the effect of different kinds of energy drinks on the liver of wistar albino rat. J Am Sci. 2012; 8(8): 688-697.
Lv X, Chen Z, Li J, Zhang L, Liu H, et al. Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress. Inflammation Research. 2010; 59(8): 635-645.
MacKay D, Hathcock J, Guarneri E. Niacin: chemical forms, bioavailability, and health effects. Nutrition Reviews. 2012; 70(6): 357-366.
Meo SA, Al-Asiri SA, Mahesar AL, Ansari MJ. Role of honey in modern medicine. Saudi Journal of Biological Sciences. 2017;24(5):975–8.
Michener CD. Bees of the World Vol.1. USA: John Hopkins University Press; 2000.
Mormone E, George J, dan Nieto N. Molecular Pathogenesis of Hepatic Fibrosis and Current Therapeutic Approaches. Chem. Biol. Interac . 2011; 193: 225–231.
Mour G, Feinfeld DA, Caraccio T, Mc Guigan M. Acute renal dysfunction in acetaminophen poisoning. Ren Fail. 2005;27(4):381–3
Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Mahmoud AM. Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutrition and Metabolism. 2019;16(1):1–17.
Schramm DD, Karim M, Schrader HR, Holt RR, Cardetti M, Keen CL. Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem. 2003;51(6):1732–5.
Shanmugasundaram P, Venkataraman S. J. Ethnopharmacol. 104 (2006) 124-128.
Sharp DS, Benowitz NL. RE: ‘Alcohol, smoking, coffee, and cirrhosis’ and ‘coffee and serum gamma-glutamyltransferase: a study of self-defense officials in japan. Am J Epidemiol. 1995; 141:480–481.
Stockham SL, Scott MA. Fundamentals of Veterinary Clinical Pathology. Ed. ke-1, Blackwell publishing Co., Iowa state Pr., 2002, pp. 433-486.
Trivedi N, Rawal UM. Indian J. Pharmacol. 30 (1998) 318-322