OPTIMASI RUTE DISTRIBUSI BARANG MENGGUNAKAN METODE SAVING MATRIX PADA PT. TUNAS MULIA ENTERPERINDO CABANG GRESIK

Main Article Content

Muhammad Rizal Mauluddin
Abi Hanif Dzulquarnain

Abstract

Abstract


This study aims to analyze the distribution strategy implemented by PT. Tunas Mulia Enterperindo Gresik Branch and to evaluate the effectiveness of the Saving Matrix method in improving distribution efficiency and reducing the company's operational costs. The main distribution issues faced by the company include a conventional working system, route planning that is not data-driven, and high distribution costs due to route duplication and underutilization of vehicle capacity.


This research addresses three main problems: (1) what is the current distribution strategy implemented by PT. Tunas Mulia Enterperindo, (2) how the application of the Saving Matrix method can improve distribution efficiency and reduce operational costs through delivery route optimization, and (3) what are the weaknesses of the Saving Matrix method in its implementation within the company.


The research uses a descriptive qualitative method with data collected through observation, in-depth interviews, and documentation. Data analysis techniques include comparing distribution conditions before and after the implementation of the Saving Matrix method, as well as validating the results through a member check process with key informants.The results show that the Saving Matrix method can reduce total delivery distance by 24 km or 9% and lower daily operational costs by up to 4%. However, several limitations were identified, including dependence on accurate distance data, lack of consideration for travel time and traffic conditions, and difficulties in adapting to dynamic customer demands. Therefore, integrating this method with logistics information systems is necessary for more effective and sustainable implementation.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

OPTIMASI RUTE DISTRIBUSI BARANG MENGGUNAKAN METODE SAVING MATRIX PADA PT. TUNAS MULIA ENTERPERINDO CABANG GRESIK. (2025). Musytari : Jurnal Manajemen, Akuntansi, Dan Ekonomi, 22(6), 41-50. https://doi.org/10.2324/h0sbbs92

References

Brown, J., & Green, R. (2020). Optimization of delivery routes using the Nearest Neighbor algorithm. Journal of Supply Chain Management, 14(2), 45-56. https://doi.org/10.1016/j.jscm.2018.03.002

Christopher, M. (2016). Logistics & Supply Chain Management (5th ed.). Pearson Education Limited.

Fadlisyah, H., Putra, C. L., & Mulyadi, N. (2020). Meminimalkan Biaya Transportasi Pengiriman Barang PLTS Seismic Area Jawa Barat dengan Menentukan Rute Distribusi yang Efisien dengan Metode Saving Matrix di PT. XYZ. AJIM: Jurnal Ilmu Manajemen, 1(2), 53-62. https://doi.org/10.20473/ajim.vi1i.19310

Guan, J., Li, Y., & Zhao, Z. (2020). Solving Vehicle Routing Problem using heuristic algorithms: A case study in e-commerce distribution. Computers & Industrial Engineering, 140, 106186. https://doi.org/10.1016/j.cie.2019.106186

Hassan, H., & Lee, C. (2019). Nearest Neighbor algorithm in supply chain management: Efficiency and applications. Operations Research Perspectives, 6, 100104. https://doi.org/10.1016/j.orp.2019.100104

Jiang, Y., Zhang, X., & Liu, Q. (2020). A hybrid approach for vehicle routing problem using saving matrix and heuristic algorithms. Journal of Logistics, 14(3), 142-158. https://doi.org/10.1016/j.logcom.2020.06.004

Kasih, P. H., & Maulidina, Y. (2023). Penentuan Rute Pengiriman untuk Meminimasi Jarak Tempuh Transportasi menggunakan Metode Saving Matrix. Jurnal INTECH Teknik Industri Universitas Serang Raya, 9(1), 53-62. https://doi.org/10.30656/intech.v9i1.5680

Li, F., & Zhang, Y. (2020). Split Delivery Vehicle Routing for Fast Delivery Systems. Computers & Operations Research, 112, 104754.

Liu, S., Zhao, L., & Zhou, Q. (2019). Improving Distribution Efficiency Using the Savings Algorithm. Logistics Research Journal, 17(2), 55–64.

Liu, X., Wang, F., & Zhao, Y. (2019). Application of Saving Matrix in distribution routing: Case study and implementation. Transportation Science, 52(4), 1234-1245. https://doi.org/10.1287/trsc.2019.0903

Martono, S., & Warnars, H. L. H. (2020). Penentuan Rute Pengiriman Barang Dengan Metode Nearest Neighbor. Departemen IT, PT Sumber Alfaria Trijaya Tbk.; Computer Science Department, BINUS Graduate Program – Doctor of Computer Science, Bina Nusantara University.

Muhayyaroh, N., Siswanto, B. N., & Dewi, N. K. (2020). Perancangan Sistem Penentuan Rute dan Optimasi Biaya Pendistribusian Barang dengan Metode Saving Matrix dan Nearest Insertion Berbasis VBA Excel. Program Studi Manajemen Logistik, Universitas Logistik dan Bisnis Internasional.

Perdana, V. A., Hunusalela, Z. F., & Prasasty, A. T. (2020). Penerapan Metode Saving Matrix dan Algoritma Nearest Neighbor dalam Menentukan Rute Distribusi untuk Meminimalkan Biaya Transportasi pada PT. XYZ. Jurnal Ilmiah Teknik dan Manajemen Industri Universitas Kadiri, 4(2), 91-105. https://doi.org/10.30737/jatiunik.vol4no2

Satria, S. T., & Kirono, I. (2023). Evaluasi dan Perbaikan Proses Pengiriman dan Pengantaran Pos untuk Mengurangi Tingkat Keluhan Pelanggan PT Pos Indonesia (Persero) Kcu Surabaya 60000. Ranah Research: Journal Of Multidisciplinary Research And Development, 6. https://doi.org/https://doi.org/10.38035/rrj.v6i1

Smith, A., Walker, J., & Thompson, D. (2020). A Comparative Study on Route Optimization Algorithms. European Journal of Operational Research, 284(1), 88-97.

Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Toth, P., & Vigo, D. (2014). The Vehicle Routing Problem. SIAM.

Wu, Z., Wang, X., & Zhang, H. (2020). Application of Genetic Algorithm in Time Window VRP. International Journal of Transportation Logistics, 19(4), 202–213.

Zhang, J., & Yang, S. (2019). Efficient algorithms for solving capacitated vehicle routing problems. Transportation Research Part C: Emerging Technologies, 104, 170-188. https://doi.org/10.1016/j.trc.2019.04.013

Zhao, Z., & Wu, Q. (2019). Nearest Neighbor algorithm: An efficient solution for real-time delivery route optimization. Journal of Transportation Engineering, 143(7), 1-8. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000890

Zhou, Y., Li, W., & Wang, F. (2020). Deep learning approach to optimize vehicle routing problem. Computers & Operations Research, 118, 104945. https://doi.org/10.1016/j.cor.2020.104945

Yustavia, A., Salomon, L., & Kristina, H. (2022). Analisis penentuan rute distribusi optimal dengan pendekatan manajemen transportasi dan distribusi di CV. Expedisi Mitra Mandiri. Jurnal Mitra Teknik Industri. 1. 126-134. 10.24912/jmti.v1i2.21248.

Similar Articles

You may also start an advanced similarity search for this article.