Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 No. 4 (2025): Kohesi: Jurnal Multidisiplin Saintek

SMART AQUAPONIC SYSTEM: PROSES BUDIDAYA SAYURAN DAN IKAN LELE YANG HIJAU DAN BERKELANJUTAN DENGAN IMPLEMENTASI TEKNOLOGI TEPAT GUNA

DOI:
https://doi.org/10.2238/fz5mmg27
Submitted
August 18, 2025
Published
2025-08-18

Abstract

The massive conversion of agricultural land in Indonesia poses a serious threat to food availability, particularly vegetables. The Smart Aquaponic System was developed as a precision farming solution integrating catfish aquaculture and vegetable cultivation using the Nutrient Film Technique (NFT), sensor-based automation, and solar energy supply. This system optimizes the use of fish waste as Liquid Organic Fertilizer (LOF) to enhance plant growth while maintaining water quality. Research results show that the Smart Aquaponic System can reduce water consumption by 70–90%, increase plant growth rates by 30–50%, and maintain water TDS levels within the ideal range of 600–800 ppm. The automation system, consisting of TDS sensors, water level sensors, solenoid valves, and an automatic fish feeder, successfully stabilizes the aquaponic cycle in a sustainable manner. With the integration of solar energy, the system supports circular economy principles, reduces dependence on external electricity, and shows strong potential for large-scale implementation in limited land areas.

Alih fungsi lahan pertanian yang masif di Indonesia menimbulkan ancaman terhadap ketersediaan pangan, khususnya sayur-mayur. Smart Aquaponic System hadir sebagai solusi berbasis precision farming yang mengintegrasikan budidaya ikan lele dan sayuran dengan memanfaatkan teknologi hidroponik Nutrient Film Technique (NFT), sistem otomasi sensor, serta suplai energi dari panel surya. Sistem ini mengoptimalkan pemanfaatan kotoran ikan sebagai Pupuk Organik Cair (POC) untuk pertumbuhan tanaman sekaligus menjaga kualitas air budidaya. Hasil penelitian menunjukkan bahwa Smart Aquaponic System mampu menghemat penggunaan air hingga 70–90%, meningkatkan laju pertumbuhan tanaman sebesar 30–50%, serta menjaga kadar TDS air dalam rentang ideal 600–800 ppm. Sistem otomasi berbasis sensor TDS, water level, solenoid valve, dan automatic fish feeder berhasil menjaga kestabilan siklus akuaponik secara berkelanjutan. Dengan integrasi energi surya, sistem ini mendukung konsep ekonomi sirkular, mengurangi ketergantungan listrik eksternal, serta berpotensi diimplementasikan secara luas pada lahan terbatas.

References

  1. Gumelar, W. R. et al. (2017) ‘Pengaruh Penggunaan Tiga Varietas Tanaman Pada Sistem Akuaponik Terhadap Konsentrasi Total Amonia Nitrogen Media Pemeliharaan Ikan Koi’, Jurnal Perikanan dan Kelautan, VIII(2), pp. 36–42.
  2. Hermina, H., & S, P. (2016). Gambaran Konsumsi Sayur dan Buah Penduduk Indonesia dalam Konteks Gizi Seimbang: Analisis Lanjut Survei Konsumsi Makanan Individu (SKMI) 2014. Buletin Penelitian Kesehatan, 44(3). https://doi.org/10.22435/bpk.v44i3.5505.205-218
  3. Ibrahim, L.A., Shaghaleh, H., El-Kassar, G.M., Abu-Hashim, M., Elsadek, E.A. and Alhaj Hamoud, Y. (2023). Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water, [online] 15(24), p.4310. doi:https://doi.org/10.3390/w15244310.
  4. Indonesia, D. (n.d.). Produksi Lele di Indonesia Sebanyak 1,06 Juta Ton pada 2021. Dataindonesia.id. https://dataindonesia.id/agribisnis-kehutanan/detail/produksi-lele-di-indonesia-sebanyak-106-juta-ton-pada-2021
  5. Kloas, W., Groß, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., Wittstock, B., Wuertz, S., Zikova, A., & Rennert, B. (2015). A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions, 7(2), 179–192. https://doi.org/10.3354/aei00146
  6. Latasya, Z., Sara, I. D., & Syahrizal, S. (2019). Analisis Rancangan Pembangkit Listrik Tenaga Surya (Plts) Off-Grid Terpusat Dusun Ketubong Tunong Kecamatan Seunagan Timur Kabupaten Nagan Raya. Jurnal Komputer, Informasi Teknologi, Dan Elektro, 4(2).
  7. Lennard, & Ward. (2019). A Comparison of Plant Growth Rates between an NFT Hydroponic System and an NFT Aquaponic System. Horticulturae, 5(2), 27. https://doi.org/10.3390/horticulturae5020027
  8. Love, D. C., Fry, J. P., Li, X., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435(0959-6526), 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023
  9. Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364–371. https://doi.org/10.5958/2455-7145.2018.00056.5
  10. Tani, P. (2021, September 13). Penyusutan Lahan Pertanian Setiap Tahunnya. Pak Tani Digital. https://paktanidigital.com/artikel/penyusutan-lahan-pertanian-setiap-tahunnya/#:~:text=Ketua%20Himpunan%20Kerukunan%20Tani%20Indonesia%20%28HKTI%29%20Moeldoko%20menyampaikan
  11. Wibowo, S. (2021). APLIKASI SISTEM AQUAPONIK DENGAN HIDROPONIK DFT PADA BUDIDAYA TANAMAN SELADA (LACTUCA SATIVA L.). Jurnal Penelitian Dan Pengabdian Kepada Masyarakat UNSIQ, 8(2), 125–133. https://doi.org/10.32699/ppkm.v8i2.1490
  12. Wulandari, D. (2018, October 11). Lahan Pertanian di Palembang Susut 10%. Bisnis.com. https://sumatra.bisnis.com/read/20181011/533/848277/lahan-pertanian-di-palembang-susut-10
  13. Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228(0959-6526), 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290

Similar Articles

21-30 of 36

You may also start an advanced similarity search for this article.