CLUSTERING PERILAKU PENGGUNA WEBSITE BERDASARKAN AKTIVITAS BROWSING MENGGUNAKAN ALGORITMA K-MEANS
Main Article Content
Abstract
This study aims to analyze website visitor behavior by applying the K-Means algorithm for clustering. The research focuses on user segmentation based on their browsing activities, such as the number of pages visited, time spent on the website, and bounce rate. The methodology employs an unsupervised learning approach, where K-Means is used to group users into three clusters: active visitors, regular visitors, and quick-exit (bounce) visitors. Data preprocessing, including missing value imputation and normalization, was conducted to ensure dataset quality and consistency. The results demonstrate that K-Means with K=3 provides an optimal clustering solution, achieving a Silhouette Score of 0.627. These findings highlight distinct user behaviors that can aid in improving website optimization and targeted marketing strategies. The study concludes that unsupervised learning techniques like K-Means can effectively segment website visitors without requiring labeled data, offering valuable insights into user engagement and behavioral patterns.
Penelitian ini bertujuan untuk menganalisis perilaku pengunjung website dengan menerapkan algoritma K-Means untuk clustering. Penelitian ini fokus pada segmentasi pengguna berdasarkan aktivitas browsing mereka, seperti jumlah halaman yang dikunjungi, waktu yang dihabiskan di website, dan tingkat bounce. Metodologi yang digunakan melibatkan pendekatan unsupervised learning, di mana K-Means diterapkan untuk mengelompokkan pengguna menjadi tiga cluster: pengunjung aktif, pengunjung biasa, dan pengunjung yang cepat keluar (bounce). Pra-pemrosesan data, termasuk imputasi nilai yang hilang dan normalisasi, dilakukan untuk memastikan kualitas dan konsistensi dataset. Hasil penelitian menunjukkan bahwa K-Means dengan K=3 memberikan solusi clustering yang optimal, dengan Silhouette Score sebesar 0.627. Temuan ini menyoroti perilaku pengguna yang berbeda yang dapat membantu dalam meningkatkan optimasi website dan strategi pemasaran yang lebih terarah. Penelitian ini menyimpulkan bahwa teknik unsupervised learning seperti K-Means dapat secara efektif melakukan segmentasi pengunjung website tanpa memerlukan data berlabel, memberikan wawasan berharga tentang keterlibatan dan pola perilaku pengguna.
Article Details
Section
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
[1] G. Chhabra, V. Vashisht, and J. Ranjan, "Missing value imputation using hybrid k-means and association rules," in 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 2018, pp. 501-509, IEEE.
[2] S. Kumar, R. Rani, S. K. Pippal, and R. Agrawal, "Customer segmentation in e-commerce: K-means vs hierarchical clustering," TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 23, no. 1, pp. 119-128, 2025.
[3] Y. Li, H. Sun, W. Chen, X. Zhang, J. Wang, and L. Zhao, "The Role of User Behavior Analytics in Enhancing Personalized E-commerce Recommendations," The Role of User Behavior Analytics in Enhancing Personalized E-commerce Recommendations, January 2025, DOI:10.13140/RG.2.2.15061.95207.
[4] S. C. Necula, "Exploring the impact of time spent reading product information on e-commerce websites: A machine learning approach to analyze consumer behavior," Behavioral Sciences, vol. 13, no. 6, pp. 439, 2023.
[5] D. Virmani, S. Taneja, and G. Malhotra, "Normalization based k means clustering algorithm," arXiv preprint arXiv:1503.00900, 2015.