STUDY LITERATURE REVIEW APPLICATION OF MARKET BASKET ANALYSIS ON UCI ONLINE RETAIL DATASET FOR BUSINESS INSIGHTS

Main Article Content

Yoseph Martua Leonard Sianipar
Rifa Andiani meilawati Yulianto
Elkin Rilvani

Abstract

The development of the business world today is occurring with remarkable dynamism, particularly in the trade sector, which is experiencing various structural changes alongside rising prices, production volumes, and technological advancements. These changes have intensified competition among industries, compelling business actors to identify opportunities and threats from the external environment to devise effective marketing strategies. The rapid growth of the retail sector in Indonesia underscores the importance of utilizing data as a foundation for decision-making, especially in product placement (floor display), which is often suboptimal due to a lack of alignment with consumer shopping habits. One data mining method that can be employed to uncover these shopping patterns is Market Basket Analysis (MBA), which serves to extract valuable insights from large-scale transaction datasets. Various algorithms have been utilized in data mining, such as naïve Bayes, decision tree, and artificial neural network; however, the FP-Growth algorithm in the MBA approach has proven more effective in identifying products frequently purchased together. This study aims to evaluate the potential of the FP-Growth algorithm in Market Basket Analysis by leveraging an online retail dataset from UCI, aiming to generate strategic insights for product placement and the implementation of marketing strategies such as cross-selling and bundling. Through a Systematic Literature Review (SLR) of 12 selected articles from national and international journals, this research is expected to provide a meaningful contribution to retail practitioners in making data-driven decisions aligned with consumer behavior.


Perkembangan dunia bisnis saat ini berlangsung dengan sangat dinamis, khususnya dalam sektor perdagangan yang mengalami berbagai perubahan struktural seiring meningkatnya harga, volume produksi, dan kemajuan teknologi. Perubahan ini menyebabkan persaingan antarindustri semakin tajam dan menuntut para pelaku usaha untuk mampu mengenali peluang serta ancaman dari lingkungan eksternal guna menyusun strategi pemasaran yang efektif. Pesatnya pertumbuhan sektor ritel di Indonesia menekankan pentingnya penggunaan data sebagai dasar dalam pengambilan keputusan, terutama dalam hal penataan produk (floor display) yang sering kali belum optimal karena belum menyesuaikan dengan kebiasaan belanja konsumen. Salah satu metode data mining yang dapat digunakan untuk mengungkap pola belanja tersebut adalah Market Basket Analysis (MBA), yang berfungsi mengekstraksi informasi bernilai dari kumpulan data transaksi dalam skala besar. Berbagai algoritma telah digunakan dalam data mining seperti naïve Bayes, decision tree, dan artificial neural network, namun algoritma FP-Growth pada pendekatan MBA terbukti lebih efektif dalam menemukan produk-produk yang sering dibeli bersamaan. Penelitian ini bertujuan untuk mengevaluasi potensi penggunaan algoritma FP-Growth dalam Market Basket Analysis dengan memanfaatkan dataset ritel daring dari UCI, guna menghasilkan wawasan strategis dalam penataan produk dan penerapan strategi pemasaran seperti cross-selling dan bundling. Dengan menggunakan pendekatan Systematic Literature Review (SLR)  terhadap  12  artikel  terpilih  dari  jurnal  nasional maupun internasional, diharapkan hasil penelitian ini mampu memberikan kontribusi yang berarti bagi pelaku ritel dalam mengambil keputusan berbasis data yang selaras dengan perilaku konsumen.

Article Details

Section

Articles

How to Cite

STUDY LITERATURE REVIEW APPLICATION OF MARKET BASKET ANALYSIS ON UCI ONLINE RETAIL DATASET FOR BUSINESS INSIGHTS. (2025). Kohesi: Jurnal Sains Dan Teknologi, 10(1), 21-30. https://doi.org/10.2238/gb3zwh60

Similar Articles

You may also start an advanced similarity search for this article.