Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 No. 4 (2025): Kohesi: Jurnal Multidisiplin Saintek

PERBANDINGAN AKURASI NAÏVE BAYES DECISION TREE UNTUK KLASIFIKASI RISIKO DIABETES

DOI:
https://doi.org/10.2238/g2afsv55
Submitted
August 28, 2025
Published
2025-08-28

Abstract

Diabetes is one of the chronic diseases with a prevalence that continues to increase globally. Early detection of diabetes risk through a data mining approach can assist in the prevention and management of this disease. This study aims to compare the performance of the Naïve Bayes and Decision Tree algorithms in classifying diabetes risk based on a patient dataset containing several clinical variables. The results show differences in accuracy between the two algorithms, which can serve as a consideration in selecting classification methods for medical applications.

Diabetes merupakan salah satu penyakit kronis yang prevalensinya terus meningkat secara global. Deteksi dini risiko diabetes melalui pendekatan data mining dapat membantu dalam pencegahan dan pengelolaan penyakit ini. Penelitian ini bertujuan untuk membandingkan kinerja algoritma Naïve Bayes dan Decision Tree dalam mengklasifikasikan risiko diabetes berdasarkan dataset pasien yang berisi sejumlah variabel klinis. Hasil penelitian menunjukkan perbedaan akurasi antara kedua algoritma, yang dapat menjadi pertimbangan dalam pemilihan metode klasifikasi untuk aplikasi medis.

References

  1. Alshdaifat, E., et al. (2020). Machine learning in medical diagnosis: A review.
  2. American Diabetes Association. (2024). Standards of medical care in diabetes – 2024. Diabetes Care, 47(Suppl. 1), S1–S194. https://doi.org/10.2337/dc24-S001
  3. Buchanan, T. A., & Xiang, A. H. (2005). A clinical update on gestational diabetes mellitus. Endocrine Reviews, 26(6), 697–733.
  4. Cowie, C. C., Rust, K. F., Byrd-Holt, D. D., et al. (2006). Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population. Diabetes Care, 29(6), 1263–1268.
  5. Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.
  6. Hu, F. B., Manson, J. E., Stampfer, M. J., et al. (2001). Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. New England Journal of Medicine, 345(11), 790–797.
  7. IDF. (2021). Diabetes Atlas.
  8. Kannel, W. B. (2000). Risk stratification in hypertension: new insights from the Framingham Study. American Journal of Hypertension, 13(1 Pt 2), 3S–10S.
  9. Kaur, H., & Gandhi, S. (2019). Comparative analysis of diabetes prediction using machine learning techniques. Materials Today: Proceedings, 18, 3144–3150. https://doi.org/10.1016/j.matpr.2019.06.114
  10. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and Structural Biotechnology Journal, 15, 104–116. https://doi.org/10.1016/j.csbj.2016.12.005
  11. Lyssenko, V., Jonsson, A., Almgren, P., et al. (2008). Clinical risk factors, DNA variants, and the development of type 2 diabetes. New England Journal of Medicine, 359(21), 2220–2232.
  12. Patil, A., & Kumar, V. (2019). Early detection of diabetes using Naïve Bayes classification. International Journal of Computer Applications, 178(7), 12–16. https://doi.org/10.5120/ijca2019918487
  13. Perkeni. (2021). Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia.
  14. Reaven, G. M. (1988). Role of insulin resistance in human disease. Diabetes, 37(12), 1595–1607.
  15. Riskesdas. (2018). Hasil Utama Riset Kesehatan Dasar.
  16. Sisodia, D., & Sisodia, D. S. (2018). Prediction of diabetes using classification algorithms. Procedia Computer Science, 132, 1573–1580. https://doi.org/10.1016/j.procs.2018.05.197
  17. Smith, J. W., et al. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus.
  18. Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the Annual Symposium on Computer Application in Medical Care, 261–265.
  19. WHO. (2021). Global report on diabetes.
  20. World Health Organization (WHO). (2016). Global report on diabetes. Geneva: World Health Organization.

Most read articles by the same author(s)

Similar Articles

1-10 of 270

You may also start an advanced similarity search for this article.